Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной / Сергей Попов. — М.: Альпина нон-фикшн, 2018.

Купить полную книгу

Солнце — очень стабильный саморегулирующийся объект. Гравитация уравновешена давлением, связанным с выделением энергии в недрах. При увеличении энерговыделения Солнце немного расширилось бы, что привело бы к падению плотности и температуры в недрах, а тем самым и к падению энерговыделения. Если же, наоборот, энерговыделение уменьшилось, то Солнце бы немного сжалось, увеличив в центральных частях температуру и плотность, стимулируя тем самым термоядерный синтез.

Энергия передается из недр наружу очень медленно, весь процесс занимает многие десятки тысяч лет. Поэтому внезапное временное исчезновение источника энергии в центре сказалось бы на внешних слоях не сразу. Это добавляет стабильности на коротких временных масштабах.

Более того, даже если бы вдруг термоядерные реакции полностью прекратились, резких изменений не произошло бы даже за миллион лет. Это связано с тем, что Солнце обладает дополнительным источником энергии: просто сжимаясь, оно может поддерживать светимость на текущем уровне на протяжении примерно 30 млн лет (это так называемое время Кельвина — Гельмгольца). Разумеется, Солнце не оставалось бы весь этот период абсолютно неизменным: оно становилось бы меньше, изменялись бы его температура и светимость. Однако такая простая оценка показывает, что серьезные изменения нашей звезды возможны лишь на очень большом временном масштабе.

Иногда это характерное время называют ядерным, оно соответствует существенному исчерпанию водорода в ядре Солнца. Полное время жизни Солнца составляет около 12 млрд лет, и более 80% этого времени оно проводит на Главной последовательности, «пережигая» водород в гелий. Это стабильное состояние, однако небольшие изменения происходят с Солнцем и в этот период. Поскольку условия для существования жизни на Земле заданы достаточно жестко, даже небольшие изменения параметров Солнца на масштабе миллиард лет могут иметь серьезные последствия.

Самым главным вопросом в контексте долговременной эволюции и появления жизни на Земле является так называемый парадокс тусклого молодого Солнца. В 1950-е гг. стало окончательно ясно, что светимость Солнца на стадии Главной последовательности возрастает. Ключевые работы на эту тему опубликовали в 1958 г. Фред Хойл (Fred Hoyle) и Мартин Шварцшильд (Martin Schwarzschild). Сейчас мы знаем, что к моменту окончательного формирования Земли солнечная светимость составляла около 70% от современной. В 1961 г. Альфред Рингвуд (Alfred Ringwood) отметил, что этот факт должен существенно влиять на ранний климат Земли. В 1972 г. Карл Саган (Carl Sagan) и Джордж Мулен (George Mullen) сделали эту проблему широко известной. В 1975 г. с легкой руки Роджера Ульриха (Roger Ulrich) появился сам термин «парадокс тусклого молодого Солнца» (faint young Sun paradox).

Проблема заключается в том, что у нас есть надежные данные о существовании жидкой воды на поверхности Земли миллиарды лет назад. Однако добиться этого при столь низкой светимости Солнца непросто. Обсуждались самые разные гипотезы, но на сегодняшний день однозначного решения нет. Большинство исследователей склоняется к тому, что причиной теплого климата 3 — 4 млрд лет назад был парниковый эффект. Наиболее подходящими парниковыми газами считаются метан, углекислый газ и аммиак.

Другим важным аспектом, связанным со свойствами молодого Солнца, является его активность. Несмотря на меньшую полную светимость, наша звезда вращалась быстрее и поэтому была гораздо более активной. Это приводило к более мощному потоку ультрафиолета и рентгеновских лучей, а также к более интенсивному солнечному ветру. Все это оказывало заметное влияние на атмосферы планет. Возможно, именно эта активность молодого Солнца привела к тому, что в атмосфере Венеры почти не осталось воды, а Марс просто потерял большую часть атмосферы. Земная атмосфера в существенной степени защищена от солнечного ветра магнитосферой. Однако мощный поток ультрафиолета все равно приводил к разрушению молекул в атмосфере и изменению ее состава (если разрушается водородосодержащая молекула — вода, метан и др., водород может затем легко покидать атмосферу, улетучиваясь в космос).

Кроме постепенных изменений (в первую очередь роста светимости), происходящих на очень больших временных масштабах — в масштабе от сотен до тысяч лет, — в поведении Солнца имеются и более слабые изменения. Они также могут оказывать влияние на земную биосферу, да и просто представляют научный интерес. Для их изучения нужны особые методы, поскольку детальные данные наблюдений ограничены всего лишь несколькими столетиями, а теоретические модели не позволяют пока достоверно просчитать такие вариации.

Так, например, используя дендрохронологические данные (вариации свойств годичных колец древесины), Илья Усоскин и его коллеги в 2014 г. показали, что за последние 3000 лет на Солнце имело место несколько заметных минимумов активности. Кроме известных минимума Шпёрера (XIV — XV вв.) и минимума Маундера (XVI — XVII вв.) это два заметных минимума в VIII и IV вв. до н. э. и три менее выраженных минимума в VII, XI и XIV вв. На такие затяжные минимумы, когда на Солнце почти нет пятен, приходится до 16% времени.

Этот результат удалось получить благодаря анализу содержания углерода-14 в остатках растений. Происхождение этого изотопа связано с галактическими космическими лучами. Высокая солнечная активность мешает частицам лучей проникать внутрь гелиосферы, а в годы затяжных минимумов поток галактических космических лучей, наоборот, возрастает, при этом образуется больше изотопа углерод-14. Такой метод хорошо работает на масштабах сотен и тысяч лет.

Можно использовать и данные по другим изотопам, таким как бериллий-10 (он также производится космическими лучами) в многовековых ледниковых отложениях. Та же группа исследователей в 2016 г. смогла оценить уровень солнечной активности на протяжении почти 10 000 лет, используя одновременно данные и по бериллию, и по углероду. На этом интервале кроме минимумов (их обнаружено 20, они занимают 17% всего времени) выделяются и длительные периоды повышенной солнечной активности. Их выявлено 14, однако в состоянии больших максимумов Солнце проводит лишь 8% времени. Например, их было относительно много в VII тыс. до н. э. и на рубеже III — IV тыс. до н. э. Возможно, и сейчас Солнце находится в стадии большого максимума (по крайней мере, вторая половина XX в. была периодом высокой активности). Кроме того, исследователи обнаружили периодичность в изменении активности Солнца с периодом около 2400 лет, однако этот результат нуждается в уточнении и подтверждении. Как бы то ни было, эти выводы показывают, что изотопные данные принципиально возможно использовать для изучения поведения Солнца на масштабах тысяч лет.

Различные данные указывают на то, что уровень солнечной активности сказывается на земном климате. С теоретической точки зрения очень многое в солнечно-земных связях остается непонятным, однако с феноменологической точки зрения корреляция климатических изменений с уровнем солнечной активности на масштабе десятилетий присутствует. Механизмы этой связи продолжают обсуждаться. В частности, считается, что большую роль может играть сильное изменение потока ультрафиолетового излучения во время разных периодов активности. Ясно, что механизмов влияния может быть много, поскольку сама система земного климата очень сложна. Тем не менее возможности анализа свойств тропосферы, воздушных течений и других параметров позволяют говорить о значимых корреляциях с различными показателями активности Солнца. Но и здесь есть проблемы. Например, европейские данные свидетельствуют о том, что среднегодичные температуры в период маундеровского минимума были ниже. Однако данные по климату в других регионах Земли не подтверждают падение температуры. Возможно, влияние Солнца по-разному сказывается в разных частях нашей планеты.

Что же будет с Солнцем и климатом на Земле в будущем? Еще задолго до того, как Солнце превратится в красный гигант, температура на Земле повысится до уровня, при котором жизнь станет невозможна. Причиной этого будет продолжающийся рост светимости Солнца (он объясняется и непрерывным ростом радиуса, и ростом температуры, который закончится через 2,5 млрд лет). Это произойдет примерно через миллиард лет, когда светимость Солнца вырастет примерно на 10%. Океаны начнут активно испаряться, вызвав сильный парниковый эффект, который приведет к еще более активному испарению (видимо, подобные явления в прошлом произошли на Венере, изменив ее климат). Почва прогреется на большую глубину, так что даже бактерии, живущие глубоко под землей, погибнут. В итоге, когда Солнце начнет уходить с Главной последовательности (в возрасте 10 млрд лет, т. е. примерно через 5,5 млрд лет), а его светимость будет на 84% выше современной, Земля уже более 4 млрд лет будет безжизненной. Позднее Земля может быть поглощена красным гигантом. Кстати, когда Солнце превратится в красный гигант, формально в зону обитаемости будут попадать объекты пояса Койпера.

Купить полную книгу



Сборник: Гражданская война в России

В результате ряда вооружённых конфликтов 1917-1922 гг. в России была установлена советская власть. Из страны эмигрировали около 1 млн человек.

Рекомендовано вам

Лучшие материалы